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ABSTRACT

A hybrid nonlinear optimal control design is experimentally implemented on a ferromagnetic

Terfenol-D actuator to illustrate enhanced tracking control at relatively high speed. The control

design employs a homogenized energy model to quantify rate-dependent nonlinear and hysteretic ferro-

magnetic switching behavior. The homogenized energy model is incorporated into a finite-dimensional

nonlinear optimal control design to directly compensate for the nonlinear and hysteretic ferromagnetic

constitutive behavior of the Terfenol-D actuator. Additionally, robustness to operating uncertainties is

addressed by incorporating proportional-integral (PI) perturbation feedback around the optimal open
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loop response. Experimental results illustrate significant improvements in tracking control in compar-

ison to PI control. Accurate displacement tracking is achieved for sinusoidal reference displacements

at frequencies up to 1 kHz using the hybrid nonlinear control design whereas tracking errors become

significant for the PI controller for frequencies equal to or greater than 500 Hz.

Keywords: nonlinear optimal tracking, ferromagnetic, rate-dependence, perturbation control

1. Introduction

The role of smart materials continues to be a critical part of technology development in many

biomedical, automotive, aerospace, and industrial applications. These materials provide advantages

in applications where large forces and small displacements are desired over a broad frequency range

with high precision. The solid state characteristics of these materials provide compact actuators which

is critical in applications where size and weight are important. A large number of these applications

employ piezoelectric or magnetostrictive materials which possess electric or magnetic field induced

displacement or force, respectively. For example, single crystal ferroelectric relaxors (PMN-PT or

PZN-PT) have provided significant advances in sonar transducer applications due to their efficiency

and relatively high strain behavior (≤ 1%) [1]. Additionally, the ferroelectric material, lead zirconate

titanate (PZT), has been successful in commercial nanopositioning stages for controlling the position

of material specimens for probing atomic structures using atomic force microscopy and scanning probe

microscopy [2]. The robustness of ferromagnetic Terfenol-D actuators has provided reliable actuator

designs for several applications including precisely machined out-of-round piston heads by effectively

controlling the cutting tool position [3].

Although these materials have been successfully applied in a number of applications, limitations

associated with nonlinear and hysteretic material behavior have presented challenges in developing high

performance actuation response over a broad frequency range. The nonlinear and hysteretic material

behavior is primarily due to the reorientation of local electric or magnetic variants that align with the

applied electric or magnetic fields. Moderate to large field levels can create strain that can range on the

order of 0.1% in polycrystalline PZT [4] and up to 6% in single crystal ferromagnetic shape memory

alloys [5] but these field levels introduce challenges in obtaining accurate and precise control due to

non-negligible nonlinear and hysteretic effects. This has motivated research in developing new control
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designs that can effectively compensate for nonlinearities and hysteresis induced by ferroelectric or

ferromagnetic switching while still providing accurate forces or displacements over a broad frequency

range.

Two general strategies are typically considered when developing a control design to compensate for

nonlinearities and hysteresis. One approach is to implement a nonlinear inverse compensator which

approximately linearizes the constitutive behavior so that linear control methods can be employed

[6–11]. This approach provides the abililty to implement well-developed linear control laws. It can

also be advantageous in applications where an unknown disturbance load is present or the reference

signal is not known well in advance; however, this advantage is only realized if the constitutive model

is efficient enough to be inverted in real-time. The second strategy typically considered entails direct

incorporation of the material model into the control design so that the nonlinear control input is

directly determined. This circumvents issues associated with computing the constitutive law inverse,

but introduces challenges in identifying robust numerical algorithms that can achieve convergence

efficiently.

Both of these control designs require an efficient and accurate constitutive model that can predict

the nonlinear and hysteretic ferroic switching behavior. Preisach models are often considered for quan-

tifying nonlinear and hysteretic material behavior in ferroic materials and have also been employed in

model-based control designs: see [8,12] for examples. These models have the disadvantage of requiring

a large number of unphysical parameters to predict minor loop hysteresis. In the analysis presented

here, a ferroic homogenized energy model is implemented which utilizes fundamental energy relations

at the mesoscopic or lattice length scale to quantify macroscopic constitutive behavior in ferroic ma-

terials. The model utilizes a multi-scale approach which relates local material inhomogeneities using a

stochastic framework to predict macroscopic material behavior [13–17]. This modeling framework has

been successful in accurately quantifying rate-dependent major and minor hysteresis loops in several

ferroelectric, ferromagnetic and shape memory alloy compositions; see [17] for a review. The stochastic

modeling approach utilizes general densities which can be fit to experimental results. This improves

model prediction which is critical in model-based control designs so that the amount of feedback

required to achieve a performance criteria is reduced.

The second strategy in developing a model-based nonlinear control design is presented here where
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the constitutive law is directly incorporated into an optimal control design. This approach is shown to

improve tracking control accuracy for a ferromagnetic transducer at frequencies up to 1 kHz. The au-

thors are only aware of one other model-based control design successfully implemented experimentally

on a similar ferromagnetic actuator [8]. In their analysis, a Preisach-based nonlinear inverse compen-

sator was employed. The reference displacement was limited to aperiodic signals centered around 30 Hz

and tracking control was improved in comparison to proportional control. In the analysis presented

here, comparisons between the nonlinear optimal control design and classical proportional-integral (PI)

control are conducted to illustrate that tracking errors using PI control only become significant for a

sinusoidal reference signal above 500 Hz. This is representative for the hysteretic operating regimes

illustrated in Figure 3. The bandwidth of the actuator is improved by directly incorporating the con-

stitutive behavior within the control design. Reasonable tracking control is achieved for frequencies

up to 1 kHz.

The experimental analysis presented here utilizes a nonlinear control design previously analyzed

numerically for controlling a ferromagnetic transducer in current control [18,19]. The model is extended

to include voltage control to accomodate the experimental set-up and is validated over a broader range

of frequencies (100 Hz to 1000 Hz) than previous numerical analyses. In Section 2, the experimental set-

up is described. In Section 3, the constitutive model and dynamic model are presented and compared

to open loop actuator characterizations. In Section 4, the nonlinear control design is presented and

compared to classic proportional-integral (PI) control to identify operating regimes where the nonlinear

control design provides enhanced performance. Section 5 includes discussion and concluding remarks.

2. Experimental Implementation

The validation of the proposed control method was performed on an Etrema Products, Inc., ferro-

magnetic Terfenol-D actuator model MFR OTY77. The actuator employs a Terfenol-D rod 12.5 mm

in diameter by 100 mm in length which is subjected to a 10-14 MPa preload and ∼40 kA/m magnetic

field bias from an external magnetic. The drive coil rating is 6.2 kA/m·A with a 3.4 Arms limit.

Figure 1 illustrates the basic internal components in the Etrema actuator which includes a Terfenol-D

rod, a compression bolt and spring washer to preload the rod, a surrounding wound wire solenoid and

permanent magnet.
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The drive voltage is generated by a 16-bit digital-to-analog converter (DAC) on a dSPACE DS1104

controller board which has an output range of 10 V and >80 dB signal-to-noise ratio. The drive voltage

is amplified by an AE Techron LVC 5050 linear amplifier set to a gain of 17 V/V. The bandwidth of

the amplifier is 20 kHz.

Reported data includes the DS1104 drive voltage, actuator current, and actuator strain. The

current supplied to the actuator is measured by the Techron’s current monitor which outputs 1 V for

every 3 amperes of current. The current monitor signal is sampled using the 16-bit analog-to-digital

(ADC) on the DS1104 board. The strain measurement is simultaneously sampled with the same ADC

from a Lion Precision capacitive sensor (PX405JTC probe with DMT10R driver) with a sensitivity of

2.5 m/V and bandwidth of 12.5 kHz. An Omega Engineering, Inc. signal amplifier model OMNI-AMP

III DC with a gain of 10 V/V and a bandwidth of 10 kHz is used to match the dynamic range of the

strain measurement with the range of the ADC.

Tests were setup as block diagrams using Mathworks Simulink. The block diagrams were then

compiled and downloaded to the DS1104 controller using Real Time Workshop, also by MathWorks.

Data was acquired using ControlDesk by dSPACE with a sample frequency of 10 kHz.
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Permanent Magnet

Terfenol−D Rod

Wound Wire Solenoid

Bolt
Compression

Spring
Washer

Figure 1: Schematic of the Terfenol-D actuator used in the control experiments.
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3. Model Development

The modeling framework used in implementing the control design incorporates ferromagnetic non-

linearities and hysteresis to predict actuation. The ferromagnetic switching behavior is modeled using

a homogenized energy model that is based on previous work described in detail in [13–17, 20]. Here

only key equations are given to motivate the implementation of the constitutive model in the structural

dynamic model and control design. The homogenized energy model is formulated using an applied

magnetic field; however, the power amplifier used in the control experiments uses voltage control.

Although a hardware modification can be employed to run the power amplifier in current control, the

homogenized energy model was extended to relate voltage to current to simplify experimental imple-

mentation. This approach results in directly determining the nonlinear voltage control input from the

homogenized energy model, structural dynamic relations and optimal control design.

In addition to quantifying the ferromagnetic switching behavior, the structural dynamics of the

actuator is quantified using a lumped parameter model. Although a distributed weak PDE formulation

can be employed to incorporate spatial dependence along the actuator length, the operating frequen-

cies considered are below resonance (see the open loop frequency response in Figure 5); therefore, a

lumped parameter model reasonably approximates the structural dynamics for the sinusoidal reference

displacement signals used in validating the control design. For more general reference displacements,

such as a step input that excites higher order harmonics, a finite element model may be necessary.

Finite element models can be directly incorporated into the model and control design as discussed

in [17–19,21].

First the homogenized energy model is briefly summarized. Second, the equations associated with

the structural dynamic model are summarized to quantify displacements predicted by the homogenized

energy model for a magnetic field input. Lastly, the nonlinear electrical impedance of the amplifier-

actuator system is modeled to relate the magnetic field to the voltage input for controlling the Terfenol-

D actuator using voltage control.

3.1 Rate-Dependent Ferromagnetic Homogenized Energy Model

The homogenized energy model is based on an energy description at the mesoscopic or lattice

length scale. This local energy formulation is used to predict macroscopic constitutive behavior using
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a stochastic representation of material inhomogenieties which relates the nucleation and growth of

local ferromagnetic domains to macroscopic actuator displacements.

The constitutive law used in modeling the Terfenol-D rod actuator in Figure 1 focuses on the one

dimensional case in the direction of uniaxial loading parallel to the rod length. In this case, material

coefficients and field quantitites have been reduced to scalar coefficients or distributed variables in the

direction of loading. The Gibbs energy at the mesoscopic length scale is then

G(M, T ) = Ψ(M, T ) − µ0HM (1)

where Ψ(M, T ) is the Helmholtz energy detailed in [17], T is temperature, H is the magnetic field, and

M is the magnetization. The one-dimensional Helmholtz energy function is a double-well potential

below the Curie point Tc which gives rise to stable spontaneous magnetization with equal magnitude

in the positive and negative directions.

The effects of rate-dependent hysteresis under applied fields are often present and must be included

in the constitutive model. This effect is modeled using the Boltzmann relation

µ(G) = Ce−GV/kT (2)

which quantifies the probability µ of achieving an energy level G. Here kT/V is the relative thermal

energy where V is a representative volume element at the mesoscopic length scale, k is Boltzmann’s

constant, and the constant C is specified to ensure integration to unity.

The Boltzmann relation gives rise to the local expected values

〈M+〉 =

∫

∞

MI

Mµ(G)dM , 〈M−〉 =

∫

−MI

−∞

Mµ(G)dM (3)

of the magnetization associated with positively and negatively oriented dipoles, respectively. Here

±MI are the positive and negative inflection points in the Helmholtz energy definition.

The local magnetization variants are defined by a volume fraction of variants x+ and x− having

positive and negative orientations, respectively. The conservation relation x− + x+ = 1 must hold for

the volume fraction of magnetization variants. The kinetic equations govern the evolution of variants
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that switch where the rate-dependent behavior is determined by a set of transition likelihoods that

define the probabilities that magnetization variants switch into negative or positive directions, more

details can be found in [15–17,22].

The resulting local average magnetization is quantified by the relation

M = x+〈M+〉 + x−〈M−〉. (4)

The macroscopic polarization is computed from the distribution of local variants from the relation

[M(H)] (t) =

∫

∞

−∞

∫

∞

0
ν(Hc, HI)

[

M (H + HI ; Hc, ξ)
]

(t)dHIdHc (5)

where ν(Hc, HI) denotes the distribution of coercive fields (Hc), interaction fields (HI) and ξ represents

the initial distribution of the local variants.

The densities can often be modeled as lognormal or normal distributions; however, when more

accurate model predictions are critical such as in the case where precision control is desired, a general

density can be fit to data. A general density is used in the present analysis and the values are

determined by employing a parameter optimzation technique to obtain sufficient model accuracy in

predicting rate-dependent hysteresis. Model predictions and comparisons to experimental results of the

Terfenol-D actuator were previously illustrated in Figure 3. Details describing techniques to identify

general densities can be found in [16,17].

Once the macroscopic magnetization is quantified by (5), the forces generated by the magnetostric-

tive actuator must be quantified for implementation within the control design. This is provided by

the constitutive law

σ = Y Mε + cDε̇ − a1(M(H) − M r) − a2(M(H) − M r)2 (6)

representing uniaxial stress in the magnetostrictive actuator where the effective properties of the

actuator include Y M as the elastic modulus at constant magnetization, cD as the Kelvin-Voigt damping

parameter, ε as the linear strain component in the direction of loading, a1 as the piezomagnetic

coefficient and a2 as the magnetostrictive coefficient. The time rate of change of the strain is denoted

by ε̇. It is assumed that stress fields are limited to the linear elastic regime where ferroelastic switching
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is negligible. The magnetization M(H) is computed using (5) where M r is the initial macroscopic

remanent state of the material. The material parameters associated with the homogenized energy

model are given in Table 1. These parameters were identified from the experimental results illustrated

in Figure 3 using parameter optimization techniques detailed in [17]. Note that these parameters

are not unique since induction was not measured. The parameter optimization was conducted using

experimental displacement measurements and compared to the current applied to the solenoid in the

ferromagnetic actuator. This identification procedure requires implementing the structural model

described in the following section.

3.2 Structural Model

The constitutive relations given by (5) and (6) are used to develop a system model that quantifies

forces and displacements when a magnetic field or stress is applied to the magnetostrictive actuator.

The partial differential equation (PDE) model is first given and then formulated as a lumped parameter

ordinary differential equation (ODE). The effective stiffness, mass and damping factor are determined

from the parameter optimization which is based on the structural dynamics of the Terfenol-D actuator

and the damped oscillator used in preloading the actuator. A simple schematic of this configuration

is illustrated in Figure 2.

A balance of forces provides [17,21]

Table 1: Parameters employed in the homogenized energy model. χm is the magnetic susceptibility. A thermal

energy parameter, γ = V

kT
, has been used where k is Boltzmann’s constant, V is the local representative volume

element and T is the temperature. M s is the local remanent magnetization and τ is the time constant, see [17]

for details.

χm = 3.3

γ = 1.23 × 108 ms2/kg

M s = 190 kA/m

τ = 1.15 × 10−4 s
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ρA
∂2w

∂t2
=

∂Ntot

∂x
(7)

where the density of the actuator is denoted by ρ, the cross-section area is A and the displacement is

denoted by w. The total force Ntot acting on the actuator is

Ntot(t, x) = Y MA
∂w

∂x
+ cDA

∂2w

∂x∂t
+ Fm(H) (8)

where the elastic restoring force is given by the first term on the right hand side of the equation and

Kelvin-Voigt damping is incorporated in the second term. The model focuses on relative displacements

from the preloaded reference state. The linear elastic strain component in the direction of loading is

defined by ε = ∂w
∂x . The coupling force Fm represents forces generated by the applied field where

Fm(H) = A[a1(M(H) − M r) + a2(M(H) − M r)2] (9)

and the hysteretic and nonlinear H − M relation is specified by (5).

As illustrated in Figure 2, the boundary conditions are defined by a zero displacement at x = 0

and the balance of forces at x = ` yields

Ntot(t, `) = −kLw(t, `) − cL
∂w

∂t
(t, `) − mL

∂2w

∂t2
(t, `). (10)

�����
�����
�����

�����
�����
�����

 L

  L

 d  L
F

+w
k  w

dw/dtc

M
u(t)

Transducer

x=0 x= l

Figure 2: Magnetostrictive actuator with damped oscillator used to quantify loads under a time varying magnetic

field. Disturbance forces along the actuator are given by Fd and the control input is u(t).
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Table 2: Model parameters for the ferromagnetic actuator and damped oscillator. The parameter optimization

identified the magnetostrictive coefficient a2 to be zero for the operating regime considered.

k = 1.96 × 107 N/m m = .013 kg

a1 = 3275 N/Am cD = 2.3 × 103 Ns/m

a2 = 0 Nm2/A2 A = 1.27 × 10−4 m2

The initial conditions are w(0, x) = 0 and ∂w
∂x (0, x) = 0.

3.2.1 Approximation Method

The second order differential equation given by (7) with boundary conditions (10) is rewrit-

ten in the form

mẅ + cDẇ + kw = Fm(H) + Fd (11)

where m, cD and k denote the effective mass, damping and stiffness coefficients, respectively.

These parameters represent the effective structural dynamic coefficients for the Terfenal-D rod

and damped oscillator as given by

m = ρA` + mL

cD = cDA
`

+ cL

k = Y MA
`

+ kL

(12)

Model parameters associated with the magnetostrictive actuator and damped oscillator used

in the control design are given in Table 2.

For control implementation, (11) can be reformulated as a first order system

ẋ(t) = Ax(t) + [B(u)](t) + G(t)

x(0) = x0

y(t) = Cx(t)

(13)
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where x(t) = [w, ẇ]T . The matrix A incorporates the mass, damping and stiffness matrices

given in (11) and [B(u)](t) includes the nonlinear input where u(t) is defined as the magnetic

field. The disturbances are denoted by the matrix G(t). These matrices are given below in

(14). The initial conditions are defined by x0. The output of the system y(t) is a function of

the system states according to the matrix C = [1, 0] where only displacement at the end of the

actuator is measurable.

A =





0 1

−k/m −cD/m



 , B(u) = Fm(u)





0

1/m



 , G(t) = Fd(t)





0

1



 . (14)

Predictions of the constitutive behavior at multiple frequencies using (13) is illustrated in

Figure 3 and compared to experimental results. A reasonable estimation of rate-dependent

hysteresis is achieved over the frequency range 100 Hz to 500 Hz using the parameters in

Tables 1 and 2. However, voltage control is used in the control experiments, therefore the

model is extended to include nonlinear electrical impedance relations to obtain a model that

can quantify the nonlinear voltage control input for experimental implementation.

3.3 Nonlinear Current-Voltage Relations

A lumped-circuit model is used to relate the input voltage to the magnetic field applied to

the Terfenol-D actuator. The power amplifier used in the experiments is assumed to be linear

and the nonlinear impedance associated with the electrical part of the system is assumed to be

related to the ferromagnetic switching in the Terfenol-D actuator. This can be modeled using

a resistor in series with a nonlinear inductor (i.e., the Terfernol-D rod) and a voltage source

that has been amplified by the linear power amplifier.

The nonlinear inductance is quantified by coupling the homogenized energy model with the

lumped-electric circuit model. The first-order nonlinear ODE for a resistor in series with a

nonlinear inductor is

12



L(M)di(t)
dt

+ Ri(t) = V (t)

i(0) = i0

(15)

where L(M) is the inductance written as a function of magnetization, i is the current, V is the

voltage input, R is the resistance and the initial conditions are defined by i0.

The magnetic field H applied to the Terfenol-D rod is related to the current by the relation

H =
N

`
i (16)

where ` is the actuator length and N is the number of coils in the solenoid. Here, the tangential

magnetic field on the surface of the Terfenol-D rod is assumed to fully penetrate the rod cross-

section area over the frequency range considered. This assumes the effects of eddy current losses

are negligible.

The inductance can be related to the magnetic permeability and the wound wire solenoid.

From classic electromagnetics [23], the inductance describes the self-induced emf which is pro-

portional to the time rate of change of current. The inductance can therefore be written as

L(M) =
N2

`

dΦm(M)

dH
(17)

where N is the number of turns in the solenoid and Φm is the flux. The flux is related to the

induction through the relation

Φm =

∫

A

B · dA (18)

where B is the induction and A is the surface. Again, since eddy currents in the Terfenol-D

actuator have been neglected and if rod end effects are neglected, the flux can be defined by

Φm = BA (19)

for the induction component B parallel to the rod length and A is the cross sectional area.
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The nonlinear inductance can be determined by including changes in the remanent magne-

tization with respect to the change in field given in (17). This can be described by representing

the magnetization as a superposition of a linear term and the rate-dependent nonlinear and

hysteretic term associated with the change in remanent magnetization. This is considered at

the macroscopic length scale by writing (5) as

[M(H)]( t) = χmH(t) + [M r(H)]( t) (20)

where χm is the macroscopic magnetic susceptibility and M r(H) is the remanent magnetization.

The induction relation B = µ0(H + M) can then be written as

[B(H)]] (t) = µ0(1 + χm)H(t) + µ0 [M r(H)]( t) (21)

where µ0 = 4π × 10−7 Wb/Am is the permeability of free space.

The nonlinear induction is then

L(M) =
N2A

`

dB

dH
=

N2A

`

(

µm + µo
dM r

dH

)

(22)

where µm is the relative permeability of the material. Note that this relation simplifies to the

classic linear inductance relation for a wound wire solenoid when the remanent magnetization is

constant. Whereas this approach is expected to provide a relation for nonlinear inductance, H−

B data is not available from the Terfenol-D actuator which requires estimating the inductance.

A fitting parameter is introduced according to

L(M) = N
dB

di
' KL

dy

di
(23)

where y is the Terfenol-D actuator displacement determined from (13) and KL is quantified

from the experimental results using voltage vs. current data and current vs. strain data. KL

was quantified at 100 Hz and held fixed for all other frequencies considered in the model-

based control design. The value that was quantified from the experiments was KL = 2 ×

105 V s/m which was used in the model results illustrated in Figure 4. Figure 4 also includes a
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linearized version of the ODE where the remanent magnetization is assumed constant. When

the inductance is linearized, the model prediction is reasonable in regimes of positive current for

the given frequency range. When the current is negative, more ferromagnetic switching occurs

which leads to better model predictions using the nonlinear inductance relation. Therefore, the

nonlinear model is used in determining the nonlinear voltage control input.

3.4 Actuator Characterization

Characterization of the actuator was done using open loop sinusoidal drive voltages at 100,

200, 300 and 500 Hz. Each data set was initiated by a half-cycle of a 1 Hz sine wave with

an amplitude of 1 V to the amplifier-actuator system; this corresponds to a current of 4.6 A.

After the initial magnetization half-cycle, sinusoidal voltage signals at frequencies 100, 200, 300,

and 500 Hz were used to drive the Terfenol-D actuator. The peak-to-peak sinusoidal voltage

inputs were adjusted to achieve minor loops extending 60 µm. Strain-current minor loops

are illustrated in Figure 3 for the frequencies 100, 200, 300, and 500 Hz. The corresponding

current-voltage loops are illustrated in Figure 4. The data given in these figures are compared

to model predictions using the homogenized energy model and lumped electric circuit model

discussed in the previous sections.

4. Control Design

To provide a metric of comparison for the hybrid nonlinear control design, we compare its

tracking performance to a proportional integral (PI) control design. First the control gains

selected for the PI controller are discussed and experimental results describing the closed loop

dynamics of the PI controller are presented. Second, the fundamental equations describing

the nonlinear control design and PI perturbation feedback are given. This follows previous

theoretical and numerical analyses of the hybrid nonlinear control design for ferromagnetic

actuators [18, 19, 24] and details regarding the algorithm formulation can be found in these

citations. Previous numerical analysis focused on quantifying a magnetic field control signal

and did not consider the electrical impedance of the amplifier-actuator system. The inclusion

15
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Figure 3: Rate-dependent constitutive data and comparison to the homogenized energy model described in

Section 3. The frequencies tested and fit to the model were (a) 100 Hz (b) 200 Hz (c) 300 Hz and (d) 500 Hz.

of the voltage-current dynamics presented in Section 3.3 is discussed in this section to illustrate

how the open loop nonlinear voltage control signal is implemented experimentally.

4.1 Proportional Integral Control Design

To facilitate the design of the PI controller, the transfer function of the open loop amplifier-

actuator system in the near linear regime was measured using a swept sine voltage input from
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Figure 4: Current-voltage behavior of the amplifier-actuator system. The data is compared to a linear and

nonlinear inductor-resistor lumped cicuit model discussed in Section 3.3. The frequencies correspond to the

data in Figure 3 where (a) 100 Hz (b) 200 Hz (c) 300 Hz and (d) 500 Hz.

the DS1104 controller board where the output was the rod tip displacement; see Figure 5.

The PI controller was designed using the form

D(s) = KP
s + KI/KP

s
. (24)

where KP is the proportional gain and KI is the integral gain. The gain KP was chosen to

move the mechanical resonance peak observed at 4 kHz below 0 dB. The ratio KP /KI was
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Figure 5: Open loop frequency response for the Terfenol-D actuator in the near linear operating regime. The

input is voltage to the wound wire solenoid and the output is the rod tip displacement.

chosen so that the phase lag occurred well below the open loop cross-over frequency. Gains

of KP = 2 × 10−2 V/ppm and KP /KI = 30 s were chosen. The PI controller boosts the

low frequency gain to reduce the steady-state error at the expense of the low frequency phase

as illustrated in Figure 6(a). The open loop controller-amplifier-actuator transfer function was

measured using a swept sine controller input to determine the stability margins; see Figure 6(b).

The phase margin is 45o and the gain margin is 2. The resulting closed loop bandwidth for PI

control is 1140 Hz; see Figure 7.
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Figure 6: Frequency response of the PI controller in (a) and the open loop controller-actuator in the near linear

operating regime in (b).

4.2 Nonlinear Optimal Tracking Control Design

We summarize here the formulation of a finite-dimensional nonlinear optimal tracking con-

trol design where an open loop control signal is computed off-line. To improve robustness

to operating uncertainties, perturbation feedback using PI control is implemented. The de-

velopment of the hybrid nonlinear optimal tracking control design follows previous numerical

analyses focused on hysteresis of magnetostrictive actuators for vibration attenuation of beam

and plate structures and tracking control of rod structures [18,19,24]. We summarize here key

equations associated with nonlinear optimal tracking control and perturbation feedback.

Optimal tracking control employs a cost functional to determine the optimal control input.

The cost functional

J =
1

2
(Cx(tf ) − r(tf ))

T P (Cx(tf ) − r(tf )) +

∫ tf

t0

[

H− λT (t)ẋ(t)
]

dt (25)

penalizes the control input and the error between the Terfenol-D actuator displacement and

the prescibed displacement where P penalizes large terminal values on the tracking error, H is

the Hamiltonian, and λ(t) is a set of Lagrange multipliers. The Hamiltonian is
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Figure 7: Frequency response of the closed loop controller-actuator system in the near linear operating regime.

H =
1

2

[

(Cx(t) − r(t))T Q(Cx(t) − r(t)) + uT (t)Ru(t)
]

+λT [Ax(t) + [B(u)](t) + G(t)]

(26)

where penalties on the tracking error and the control input are given by the variables Q and

R, respectively.

The minimum of the cost functional in (25) is determined under the constraint of the differen-

tial equation given by (13). By employing Lagrange multipliers an unconstrained minimization

problem is constructed where the stationary condition for the Hamiltonian yields the adjoint

relation [25,26]

λ̇(t) = −ATλ(t) − CTQCx(t) + CTQr(t) (27)
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and optimal control input

u∗(t) = −R−1

(

∂B(u)

∂u

)T

λ(t). (28)

The resulting optimality system is







ẋ(t)

λ̇(t)






=







Ax(t) + [B(u∗)](t) + G(t)

−ATλ(t) − CTQCx(t) + CTQr(t)







x(t0) = x0

λ(tf ) = CTP (Cx(tf ) − r(tf )) .

(29)

The force determined from (9) is included in the input operator [B(u∗)](t) which directly in-

cludes the rate-dependent nonlinear and hysteretic H −M behavior within the control design.

This dynamic system results in a two-point boundary value problem which precludes an effi-

cient Ricatti formulation due to the nonlinear nature of the input operator. This system of

equations and the boundary conditions are solved using a quasi-Newton method to determine

the nonlinear magnetic field input; see [18] for more details.

An additional step is necessary to implement the control design experimentally using the

voltage control amplifier. As discussed in Section 3.3, the homogenized energy model can be

used to quantify nonlinear inductance. This relation is used to numerically determine the

voltage control from (15) since the current can be determined from the magnetic field in (28)

and the current-field relation in (16).

The following steps are used to determine the voltage control input: 1) The optimal magnetic

field is computed from (28). 2) The actuator is simulated by applying u∗(t) to (13) to determine

dy
du∗

to obtain the nonlinear inductance. 3) The nonlinear voltage control is computed by

solving the nonlinear ODE in (15) numerically. Numerical implementation of (15) uses a central

difference approximation,
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Vk =
1

2
(L(Mk) + L(Mk+1))

ik+1 + ik
∆t

+
1

2
R (ik+1 + ik) (30)

where a temporal step size ∆t is employed giving a discretization in time defined by tk = k∆t.

The voltage solved in (30) is the nonlinear open loop control input used in the experiments.

3.2.1 Perturbation Feedback

It is known that open loop controls are not robust with regard to operating uncertainties

such as unmodeled constitutive behavior or disturbance loads. To mitigate these effects, PI

perturbation feedback about the optimal open loop signal is implemented to improve robustness.

The perturbation control design is identical to the PI controller given in (24). The pertur-

bation control can be written in the time domain as

δu(t) = −KP e(t) − KI

∫ t

0

e(s)ds (31)

where e(s) is the error between the measured displacement and the reference displacement. The

perturbation control input is added to the system previously given by (13)

ẋ(t) = Ax(t) + [B(u∗ + δu)](t)

x(t0) = x0 + δx0

(32)

where the nonlinear input operator includes the optimal open loop control u∗(t) and the per-

turbation feedback control δu(t). Possible variations in the initial conditions are denoted by

δx0. The control gains used in the perturbation feedback controller were the same as the PI

controller presented in Section 4.1.

5. Tracking Control Experimental Results

The performance characteristics of the PI controller, open loop nonlinear optimal control

design, and nonlinear optimal controller with PI perturbation feedback is given to illustrate

operating regimes where the nonlinear controller is superior. The control experiments were
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initiated by a half-cycle 1 Hz sine wave with amplitude 1 V. The reference displacement is

taken to be zero at the onset of applying control; therefore, the initial remnant displacement

occurring after the magnetization half cycle is subtracted from the total actuator displacement.

The commanded reference input to the controller was a sinusoidal signal. The amplitude of the

reference signal was chosen to be 30 µm which represents an operating regime where significant

nonlinearities exist as previously illustrated in Figure 3. Control experiments for frequencies

100, 200, 300, 500, 700, and 1000 Hz were conducted and the results are illustrated in Figure 8

for each control design. The length of the reference signal in all cases except for the 1 kHz case

was 4.25 periods. The 1000 Hz experiment was extended to 10 periods in order to observe the

potential effects of drift using the open loop nonlinear optimal controller.

The comparison in tracking performance for each reference displacement signal is illustrated

in Figure 8. Comparable performance was achieved between the PI controller and the nonlin-

ear optimal control design for 100 and 200 Hz reference displacements. Marginal differences

in tracking control between PI and the nonlinear control design become apparent at 300 Hz

and at higher frequencies, the tracking error using PI control continues to increase. A phase

lag occurs due to the hysteresis as the frequency increases above 500 Hz. As the reference

displacement frequency approaches the bandwidth of the PI controller, the amplification in the

closed loop system previously shown in Figure 7 degrades tracking control; see Figure 8. This

is also illustrated in Figure 10 where the voltage control input is shown for the 500 Hz and

1000 Hz cases. A phase lag is shown between the nonlinear open loop optimal control and

the PI controller at 500 Hz while the PI controller over-amplifies the control signal at 1000 Hz.

Figure 10 illustrates how the nonlinear open loop control directly compensates for the nonlinear

and hysteretic constitutive behavior. It should also be noted that minor errors in drift occur at

1000 Hz using nonlinear open loop control, but this error is corrected by including perturbation

feedback as shown in Figure 8(f) and expanded in Figure 9.

The tracking error for each experiment is quantified using the percent root-mean-square

(RMS) error and is presented in Table 3. The percent RMS error is defined by
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Figure 8: Comparison of the tracking control performance using PI control, nonlinear open loop optimal control

and nonlinear open loop optimal control with PI perturbation feedback. The frequencies tested range from (a)

100 Hz (b) 200 Hz (c) 300 Hz (d) 500 Hz (e) 700 Hz (f) 1000 Hz.
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Figure 9: Tracking control experimental results at 1 kHz expanded from Figure 8 to illustrate improvements in

tracking control between PI control and nonlinear optimal control.

Table 3: Percent RMS error for each tracking control experiment illustrated in Figure 8.

Frequency PI Control Open Loop Optimal Control Perturbation Control

100 Hz 0.7% 1.4% 0.02%

200 Hz 2.3% 2.2% 0.08%

300 Hz 4.8% 1.7% 0.2%

500 Hz 15% 0.73% 0.8%

700 Hz 29% 1.2% 2.4%

1000 Hz 94% 2.2% 1.3%
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Figure 10: Comparison of current inputs using open loop nonlinear optimal control and PI control. (a) Current

input for the 500 Hz reference displacement. (b) Current input for the 1000 Hz reference displacement.

eRMS =
1
T

∫ T

0
e2(t)dt

max(y(t)) − min(y(t))
(33)

where T is the final time in each experiment. A direct comparison of percent RMS error

between nonlinear control with perturbation and PI control illustrate superior performance at

all frequencies tested. The percent error was reduced by more than one order of magnitude at

each freqency tested. It should also be noted that open loop nonlinear control and perturbation

feedback control gave approximately the same error at frequencies ≥500 Hz. This is believed

to be related to the bandwidth of the PI controller used for perturbation feedback since the

control gains were the same as the PI control design.

6. Discussion and Concluding Remarks

The incorporation of the homogenized energy model in the nonlinear optimal control design

was shown to significantly improve tracking control at frequencies up to 1000 Hz. Reason-

able robustness in model predictions was illustrated by fitting a single set of rate-dependent

material parameters to data between 100 and 500 Hz which was then used in controlling the
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Terfenol-D actuator up to 1 kHz. As previously noted, only current vs. displacement data was

available from the Etrema actuator which required estimating the current vs. magnetization

hysteresis loops. Since the induction of the ferromagnetic actuator was not known, uncertainty

in estimating certain rate-dependent model parameters occurred. While this limits achieving

an accurate model prediction of both displacement and magnetization, it illustrates the ability

to implement the model-based control design on ferromagnetic actuators in situations where

the magnetization is not measurable but only displacement tracking is desired.

Previously, the homogenized energy model has focused on applying a magnetic field to

quantify changes in the internal magnetization state. In the present analysis, the homogenized

energy model was used to relate magnetic fields to voltage inputs. A simple relation was

presented to relate the magnetic field in the Terfenol-D rod to the current in the wound wire

solenoid. This approach assumed full penetration of the magnetic field for the frequency range

considered which neglects eddy currents. The Terfenol-D rod was not laminated; therefore,

the possibility of generating eddy currents is likely to occur in the frequency range tested.

Further work is required to quantify this behavior and identify the appropriate method for

including eddy currents in the model-based control design. The effect of ferromagetic switching

behavior on the nonlinear inductance was included in the model, as previoulsy illustrated in

Figure 4. This gave improved model predictions, particularly in regions where more ferromagetic

switching is expected to occur as shown in Figure 4, but approximating the inductance as linear

may be sufficient depending on the performance requirements needed and the magnitude of

ferromagnetic switching.

The nonlinear optimal control design has focused on applications where the reference dis-

placement is known in advance and precise control is desired at relatively high speed. For

these applications, the nonlinear control input can be computed off-line and then implemented

in real-time control applications. Although the numerical procedure requires convergence of a

nonlinear two-point boundary value problem, once the numerical procedure is developed, the

control input for most reference signals (within phyical limitations) can be quantified. This

approach provides an alternative to nonlinear inverse compensator designs which depend on
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the ability to invert the constitutive model efficienctly in real-time.

The PI controller provided good tracking control at 100 and 200 Hz and performance degra-

dation began to occur at 300 Hz. Amplification in the closed loop response (see Figure 7)

increased the tracking error as the frequency approached the bandwidth of the system, see

Figure 8(a-f). In addition, the effects of nonlinearities and hysteresis previously illustrated in

Figure 3(d) become significant at higher frequencies which limits precise displacement control.

Conversely, when the nonlinear optimal control design is implemented with pertubation feed-

back, the tracking errors are reduced and good performance is achieved up to 1000 Hz. These

experimental results used perturbation control gains that were identical to the PI control gains.

Although larger gains were considered for perturbation control, reduction in tracking error was

not achieved. Whereas the inclusion of open loop nonlinear control is expected to reduce the

effect of phase lag from nonlinearities and hysteresis and allow the application of larger per-

turbation control gains, this was not the case. More work is required to identify this issue.

Despite this effect, the hybrid nonlinear control design provides considerable improvements in

bandwidth by including the homogenized energy model in the control design. Additionally,

due to the general ferroic homogenized energy modeling framework, the control design can be

potentially applied to a number of smart material systems and structures that use ferroelectric,

ferromagnetic or shape memory alloys.
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